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Abstract
We present a method for fitting neural networks to geometric and energetic data sets. We then
apply this method by fitting a neural network to a set of data generated using the local density
approximation for systems composed entirely of silicon. In order to generate atomic potential
energy data, we use the Bader analysis scheme to partition the total system energy among the
constituent atoms. We then demonstrate the transferability of the neural network potential by
fitting to various bulk, surface, and cluster systems.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Today, there exist many schemes for the development of
empirical potentials for application in molecular dynamics
research. These schemes range from simple two-body
potentials such as the Lennard-Jones potential, through
potential functions of intermediate complexity such as the
glue model [1], the embedded atom method [2, 3], and the
Finnis–Sinclair potentials [4], to angular dependent forms
including the Stillinger–Weber [5], and Tersoff [6] potentials.
Potentials [1–4] involve both a sum of two-body interaction
potentials, and a potential term which is a sum of a
function of the generalized coordination of each atom. The
coordination potential terms are formulated in such a way
as to model changes in interatomic bond strength as a result
of crowding and steric hindrance among neighboring atoms.
While not of great importance in the modeling of noble
gases, these terms are more significant in the modeling of
metallic materials, especially those with increasing covalent
bonding character. The Stillinger–Weber potential replaces
the coordination terms of potentials [1–4] with a three-body
angular term that introduces an energetic penalty which is
a function of angular deviations from an angle of known
stability. This angular potential energy term attempts to model
atomic orbital hybridization, in addition to atomic crowding
and changes in coordination. The Tersoff potential arguably
improves on this concept by replacing the angular potential
terms with a set of attractive terms for each interatomic
interaction that are proportional to the bond order of each

interaction. This bond order is in turn defined as a function
of a coordination number corresponding to the bond i j . This
bond coordination number is formulated using the bond angles
and distances involving bonds i j and all ik (k �= j ). While
potentials [5, 6] have found some success in describing certain
aspects of semiconductor systems, they still demonstrate
serious transferability problems.

Meanwhile, cheaper availability of more and more
powerful computers has led to broader applicability of ab initio
electronic structure methods in recent years. In particular,
density functional theory has experienced a boost of popularity,
for physical, chemical, and materials science applications. Two
decades ago, molecular dynamics simulations in which ions or
nuclei moved classically in a potential field calculated by using
ab initio methods were pioneered by Car and Parrinello [7].
These calculations bypassed the issue of empirical potential
development entirely, avoiding many of the problems inherent
in these potentials. This approach effectively uses the
Born–Oppenheimer approximation to separate the dynamics
simulation into two parts: the calculation of forces on the
ions by differentiation of the electronic structure energy, and
the movement of the atomic coordinates according to classical
physics using a numerical integration algorithm [8]. The vast
majority of computation time corresponds to the calculation
of the forces on the nuclei. MD simulations can thus, in
principle, arbitrarily approach ab initio levels of accuracy
without the vast computational expenses associated with such
methods, by more accurately fitting the ab initio potential
energy surfaces to more complex parametrized models, and
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Figure 1. Input variables.

replacing the differentiation of the electronic structure energy
by the evaluation of the energy from these models.

Neural networks have been used successfully to model
various complex systems [9–14], without the formation of an
explicit model or parametrized formula. Instead, the artificial
neural network is composed of a set of interconnected nodes
or neurons, which individually take a set of input values and
produce an output value based on a simple formula that takes
a small number of parameters. In a feed-forward network,
the entire neural network is composed of a number of layers
of nodes. The first layer is composed of input nodes, which
produce the independent variables as outputs. Each node of
the second layer maintains a connection to each of the input
nodes with a specific weight, wA

Q P . The inputs to each of the
second layer nodes are then simply the product of the weight
with the output from each of the input nodes. This sum is then
passed as the parameter of an activation function φ. The output
from each node is then evaluated as the sum of this activation
function and the bias of the node bA

Q . A similar process is used
for the third layer of nodes, using the weights wB

RQ , and the
outputs from the second layer, and so on. The final layer is
called the output layer, and the outputs from this layer are the
predicted values of the dependent variables of the model.

A major obstacle in the creation of empirical potentials has
been a lack of transferability from one chemical environment
to another. This problem arises because most current potentials
have a fixed functional form, which is generally modeled to a
subset of related chemical environments that are of interest.
Unfortunately, this tends to limit their general applicability,
especially to chemical systems that are far from equilibrium
or far from the fitted chemical environments. Neural networks
can be used to overcome this difficulty, because they require
no fixed functional form. They also have the ability to
model complex and nonlinear systems through a process of
training, where the weights and biases are fitted to a data
set of interest. This fitting process can be achieved by the
method of backpropagation, where the gradient of the square
of the energy error is calculated by differentiation. This energy
residual is minimized with respect to the weights and biases.

If neural networks are to be used for atomistic energetics
calculations, a method then needs to be created to generate
input values from a set of atomic coordinates. One such
method is presented in this paper, which uses interatomic
distances, angles, and torsion angles to generate these input
values.

2. Neural network

Previously, we have reported a neural network potential,
similar in design to the present algorithm, except with fewer

Figure 2. Neural network model.

input variables, that was fit to a smaller subset of tight-binding
energetics data [13]. The present algorithm improves on this
design by fitting a larger subset of ab initio data, using some
additional input variables.

Recently, an algorithm for generating an interatomic
potential for silicon using a neural network was reported [15].
This neural network used a set of symmetry functions to
characterize the environment of each atom, and used these
symmetry functions as input to the neural network. An
advantage of this network design was that the number of input
variables for each atom was constant, and independent of the
geometry of the neighborhood of the atom.

2.1. Input layer

In this paper, we present a different method for generating
a many-body interatomic potential from ab initio data, using
a feed-forward network topology. In contrast to previously
reported network topologies, this network has a variable
number of input variables for each atom in the system.
Additionally, the complete geometric environment of each
atom is explicitly taken into account, including local bond
lengths, angles, and torsion angles. Input to the neural network
is composed of a series of vectors, (labeled as x(1) to x(N)

in figure 2). Each of these input vectors corresponds to a
five-atom chain found within the system, and has a set of P
components. In the neural network presented here, P = 13,
meaning that each vector has a total of 13 variables, nine
of which completely describes the geometry of the five-atom
chain: ri j , r jk , rkl , rim , cos θi jk , cos θ jkl , cos θmi j , τi jkl , and
τmi jk , (see figure 1). In addition to these geometric input
variables, the following additional variables are used:

Ni =
∑

j

Si j (1)
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N j =
∑

k �=i

S jk (2)

Nm =
∑

k �=i

Smk (3)

Ninputs =
∑

j �=i

Si j

(
1 +

∑

k �=i, j

S jk

(
1 +

∑

l �=i, j,k

Skl

×
(

1 +
∑

m �=i, j,k,l

Sim

)))
, (4)

where i , j , k, l, and m are the indices of atoms, and Si j is
the bond screening factor between atoms i and j (described
below). The sums with index j are over the neighbor list
associated with atom i , while the sums with index k are over
the neighbor list associated with atom j , and so on. The
neighbor list was generated with a cutoff distance of 8 Å. The
two-center bond screening factors Si j were calculated as the
product of all three-center bond screening factors:

Si j = f (ri j)
∏

k �=i, j

Sik j , (5)

where the product is over all atoms k which are found on
the neighbor lists of both atom i and atom j , and f (ri j)

is a distance screening function, (distances measured in
Ångstroms):

f (ri j) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 ri j < 6.5

1

2

[
cos

( π

1.5
(ri j − 6.5)

)
+ 1

]

6.5 < ri j < 8.0

0 ri j > 8.0.

(6)

The three-center bond screening factors Sik j were
calculated using the scheme of Baskes [16]. A total screening
factor S(n) is calculated for each input vector x(n):

S(n) = Smi Si j S jk Skl . (7)

All possible five-atom chains involving atom i with S(n) �=
0 are used as input for the neural network. The output of the
neural network is the predicted energy of atom i , (figure 2).

2.2. Hidden layers

Each input vector is associated with its own individual first
hidden layer, composed of Q nodes, as in figure 2. In the fitted
neural network reported here, Q = 13. From each input vector
x(n), the outputs from the first hidden layer yA(n) are calculated
as follows. The activation function for all nodes in the network
is the sigmoid function:

f (x) = 1

1 + e−x
. (8)

This means that the output for the qth node in the nth first
hidden layer is:

y A(n)
q = f

(
P∑

p=1

wA
qpx(n)

p + bA
q

)
, (9)

where wA
qp are the first hidden layer weights, x(n)

p are the input
values, and bA

q are the first hidden layer biases.

There is always the same number of nodes (Q) in the
second hidden layer as there are for one of the N first
hidden layers. The inputs to the second hidden layer are
then calculated as the linear combination of the corresponding
outputs from all N of the first hidden layers. The weight
of each first hidden layer yA(n) is the total screening factor
S(n). The third hidden layer is then calculated using a linear
combination of the outputs from the second hidden layer, with
their corresponding biases, which is then fed into the sigmoid
activation function. The total number of nodes R in the third
hidden layer is equal to 13 for the network reported here. The
output from the final node, y N N , is then a scaled representation
of the energy of the atom i .

2.3. Data fitting

All inputs and outputs are linearly scaled such that the entire
data set occurs in the range 0.1 < x < 0.9. The set of geometry
and energy data was divided up on a per-atom basis, in which
60% of the atoms were assigned to the training set, 20% were
assigned to the validation set, and 20% were assigned to the
test set. All weights and biases were optimized to minimize
the sum of the squares of the errors within the training set,
while not increasing the error of the validation set. The neural
network was composed of 13 nodes in each of the second and
third hidden layers. The optimized weights and biases were
calculated by minimization of the square of the error of the
predicted energies, R:

R =
∑

data set

(Epredicted − Eactual)
2. (10)

The method of backpropagation was used to calculate the
required gradients of R with respect to each weight and bias
in the neural network. Using these gradient vectors, R was
minimized by using the Levenberg–Marquardt algorithm [17].

2.4. Bader analysis

One of the challenges of using ab initio data to fit empirical
potentials is the division of the total system energy among the
atoms composing the system. Here, the atoms in molecules
approach is used to assign regions of space to each atom in the
system [18]. These regions of space are called atomic basins.
They are enclosed by a unique set of surfaces, through which
the flux of the electronic charge density gradient is zero. The
atoms in molecules scheme has several advantages when used
to allocate properties among atoms in a system. The scheme
can be performed is relatively independent of the atomic basis
sets used for the ab initio calculation. In fact, these basins can
be calculated using experimental charge densities, or charge
densities derived from calculations that use a plane wave basis.
In this paper, we use the Bader DFT energy allocation method
previously reported by us [19]. The band energy of the system
was allocated among the atoms using a Mulliken-like scheme,
as previously described. The double-counting energy terms,
which are dependent only upon the density of the system, and
therefore are not directly related to the localized atomic basis
functions, was then partitioned among the atoms by integrating
it over each atomic basin.

3
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b)a)

c) d)

Figure 3. Neural network fits for symmetric clusters: (a) Si2, (b) Si4 square, (c) Si3 equilateral triangle, (d) Si4 tetrahedron. Energetics for the
clusters are compared for rSi−Si between 1.2 and 8.0 Å.

b)a)

c) d)

Figure 4. Neural network fits on potential energy surfaces for asymmetric Si3 clusters: (a) and (b) show ab initio calculations for the potential
energy surface with one angle of the triangle held constant, (60◦ and 120◦, respectively). (c) and (d) show the same potential energy surfaces
as predicted by the neural network.

3. Results

The results of the neural network fitting procedure are shown
in figures 3–9. The weights and biases for the final fitted
network are listed in tables A.1–A.4. The data set contained
260 single point symmetric clusters, for Si2−4. For the Si4

clusters, both squares and tetrahedra were used in the data

set, (figure 3). Additionally, 225 asymmetric Si3 clusters

were used, with interatomic angles varying between 0◦ and
180◦, and interatomic distances ranging between 1 and 8 Å,

(figure 4). A set of 330 distorted bulk diamond systems

4
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b)a)

c)

Figure 5. Neural network fits for silicon diamond lattice distortions: (a) hydrostatic (bulk modulus), (b) C44, and (c) C ′.

b)a)

c) d)

Figure 6. Neural network fits for silicon diamond lattice interstitials. (a) and (b) Energies of individual lattice atoms are plotted with respect to
their distance from a hexagonal and tetrahedral interstitial, respectively. (c) and (d) The 2 × 2 × 2 unit cells undergo hydrostatic compression.

were used, with varying hydrostatic compression strains, C ′
distortion strains, and C44 distortion strains. The predicted
and ab initio energies of these bulk diamond systems are
shown in figure 5. Both hexagonal and tetrahedral interstitial
systems were present within the data set, including 32 systems
composed of a 2 × 2 × 2 unit cell with various cell parameters.

The resulting stress–strain curves, and plots showing the
predicted and actual energies of the lattice silicon atoms with
respect to their distances from the interstitial are shown in
figure 6. Relaxed 2 × 1 and 2 × 2 reconstructed (001) model
systems were also included, as slabs of 14-atom thickness. A
set of 20 2 × 1 reconstructed (001) surface slabs with varying

5
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b)a)

c)

Figure 7. Neural network fits for diamond (001) 2 × 1 and 2 × 2 reconstructed surfaces. (a) Energy is plotted against dimer tilt angle, with the
tilt angle varying from 0◦ to 19◦. (b) and (c) Energies of individual atoms are plotted with respect to their depth into the slab, for the 2 × 2 and
2 × 1 reconstructions, respectively.

b)a)

c) d)

Figure 8. Neural network fits for silicon β-tin and BC8 lattices: (a) and (b) hydrostatic compression, (c) β-tin a/c ratio, and (d) BC8 C ′
distortion curves.

dimer tilt angles was also included in the data set, (figure 7).
The tilt angles ranged between 0◦ and 19◦, with 19◦ being
the energy minimum. Finally, silicon β-tin, BCT5, and ST12
systems were included with various hydrostatic compression

strains, and a/c ratios were included in the data set, along with
BC8 systems with both hydrostatic compression strains, and C ′

strains, (figures 8, 9). The optimized neural network weights
and biases are given in the appendix.

6
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b)a)

c) d)

Figure 9. Neural network fits for silicon ST12 and BCT5 lattices: (a) and (b) hydrostatic compression, (c) and (d) a/c ratios.

4. Discussion

The results have shown that neural networks can be used to fit
the potential energy surfaces associated with a diverse set of
ab initio data for silicon. Small clusters, distorted Si-diamond,
β-tin, BCT5, BC8, and ST12 unit cells, interstitial defects,
and reconstructed surfaces have been fit using the screened
neural network scheme described in this paper. The energetics
of silicon clusters, bulk, and diamond (001) surfaces have
been successfully modeled simultaneously with the same novel
potential, based upon the results of ab initio density functional
theory calculations. Additionally, the energy dependence upon
the silicon diamond (001) surface dimer tilt angles has been
fit successfully. It has been demonstrated that the neural
network design is capable of fitting not only the total system
energies, but also the individual atomic energies from the
energy partitioning scheme. The neural network design allows
the use of a variable number of inputs, by using a screening
factor to combine the first hidden layer nodes for each of a
set of input vectors. Each input vector fully describes the
geometry of a five-atom chain containing the atom of interest.
The first hidden layer nodes for each input vector are combined
using a screening factor which is the product of the screening
factors associated with each of the four interatomic bonds
within the five-atom chain. The interatomic screening factors
are products of a distance screening function, and an atom
screening function previously reported [16]. The distance
screening function ranges from 0 to 1, and has a smooth first
derivative. Due to the fact that the geometry is characterized in
terms of only interatomic distances, angles, and torsion angles,
the input representation is independent of the axes used to
describe the atomic coordinates, and is invariant to rotation of

the system. Due to the nature of the screening factors, the input
vectors are continuous and smooth with respect to movement
of atoms within the system, which is a necessary condition
for obtaining smooth potential energy curves from the neural
network’s output.

Two limitations of the neural network design are the
large number of input parameters required for some systems,
(particularly the BC8 systems), and a lack of the ability to
extrapolate to some system geometries outside of the training
set. The major reason for the large number of input parameters
is the redundancy of the input data, as each interatomic
distance, angle and torsion can often be present several times
in the input data. This is because each bond, angle and torsion
angle can be part of several different five-atom chains. The lack
of extrapolation ability is an inherent limitation of any neural
network, and can be remedied by taking systematically larger
sets of data into the training set.

5. Future prospects

Despite these limitations, the neural network potentials could
be useful to obtain ab initio accuracy at a small fraction of
the computational cost. Forces can easily be calculated by
differentiating the total system energy with respect to the
coordinates of the atoms in the system. This allows the
possibility of molecular dynamics simulations based upon
the neural network potential. Additionally, the network can
be generalized to multi-component systems. This would be
accomplished most easily by adding a set of five additional
input variables, which represent the element of each atom in the
chain, and by fitting interatomic potentials between multiple
different elements.

7
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Appendix. Neural network parameters

Table A.1. Biases.

Layer 1 Layer 2 Layer 3 Layer 4

b1 −24.194 887 57 −2.453 917 947 −1.731 891 107 235.821 4374
b2 7.855 650 659 −2.666 861 068 −83.914 995 43
b3 −28.209 536 58 0.663 331 165 −5.506 684 641
b4 −6.000 666 175 1.270 167 597 −2.917 664 551
b5 1.355 351 589 −1.743 372 541 14.581 724 57
b6 −4.93 × 10−2 0.115 779 703 30.864 429 75
b7 65.306 090 95 0.984 555 389 −12.387 800 15
b8 13.872 303 91 −1.008 096 389 −119.012 648 7
b9 14.606 556 81 0.250 268 36 −38.052 562 82
b10 15.713 059 35 0.346 107 045 −6.666 571 419
b11 24.438 237 84 −0.215 688 631 4.408 088 51
b12 −22.081 793 55 0.818 524 672 −17.278 466 27
b13 −4.677 000 448 −0.419 191 786 21.416 144 12

Table A.2. Weights A.

wA
i j i

j 1 2 3 4 5

1 9.461 963 084 −20.440 775 85 −19.633 911 37 −12.616 044 89 7.790 530 219
2 −6.476 773 757 1.009 275 34 −22.777 405 46 −2.283 720 521 −4.905 044 473
3 15.359 785 91 −8.314 029 502 24.877 780 28 3.111 485 278 −17.497 874 11
4 −1.845 622 721 −4.540 684 498 4.987 401 41 0.179 084 083 −3.956 729 862
5 0.483 804 234 −6.713 045 382 7.035 476 613 0.820 614 138 12.311 569 97
6 18.406 941 78 −3.454 207 762 17.055 1604 4.701 254 12 −10.401 318 28
7 4.622 497 864 12.603 485 26 −21.220 830 72 7.443 793 936 −12.332 928 49
8 −4.517 640 107 −7.258 905 479 −25.979 942 24 −4.566 760 786 −0.359 210 81
9 3.061 970 2 −3.757 521 144 3.090 223 106 −4.128 690 031 7.076 648 59
10 39.911 853 25 3.579 947 725 56.630 975 37 4.514 400 644 27.174 201 49
11 0.425 452 957 −13.754 607 26 −32.767 092 82 −5.658 170 093 −20.975 244 41
12 −17.985 576 69 24.829 496 78 28.194 0987 8.363 833 038 0.531 683 196
13 −56.463 018 59 3.806 683 698 −29.543 670 51 4.670 613 522 −12.605 866 24

j 6 7 8 9 10

1 −3.395 954 035 81.189 947 78 −21.350 328 85 22.947 844 55 1.780 084 99
2 0.650 159 733 84.242 3039 1.418 745 777 2.233 182 86 0.834 558 921
3 14.673 108 31 −186.555 2164 −8.615 825 601 −2.665 803 274 −38.517 793 56
4 14.678 560 35 −15.714 861 21 −0.957 659 426 −4.400 316 504 −3.932 550 473
5 −1.708 907 626 −47.176 989 04 1.455 487 292 −9.039 747 044 −10.428 956 37
6 7.59 × 10−2 18.023 235 91 −17.726 855 53 3.583 088 661 −0.882 705 823
7 7.521 569 215 9.397 421 886 6.119 598 278 −9.871 760 612 12.836 997 94
8 13.615 704 7 −13.427 837 13 −5.180 494 846 4.602 055 195 −2.419 326 148
9 0.587 780 948 −1.911 801 507 4.757 399 246 −7.134 793 967 −20.601 468 23
10 −31.444 290 51 −2.974 290 699 4.645 659 378 −2.834 087 738 −7.453 378 403
11 19.365 009 56 −14.342 854 15 −13.084 810 31 6.245 148 008 2.152 761 505
12 −18.042 705 21 7.886 091 286 6.986 650 979 −10.499 1478 −0.105 569 345
13 25.250 26 −34.481 286 15 20.227 315 03 −8.975 026 859 −0.822 776 451

j 11 12 13

1 2.688 011 573 −17.443 693 95 −4.262 926 602
2 −19.865 393 55 −3.759 714 138 2.669 316 86
3 0.951 869 084 −17.147 613 05 12.663 829 83
4 5.046 154 211 −10.214 290 13 −7.081 107 604
5 −13.867 714 43 13.896 529 85 4.196 947 351
6 −14.178 2213 26.169 745 13 7.017 171 559
7 −15.433 874 03 −24.839 773 32 10.620 387 76
8 −12.548 791 86 −12.407 586 33 12.762 777 02
9 −5.412 492 575 −30.784 694 33 −1.405 575 552
10 13.368 177 28 63.072 846 15 −14.008 482 88
11 −27.134 1802 −41.952 190 27 −4.688 905 298
12 13.153 582 59 45.661 910 43 4.882 555 594
13 49.905 451 05 −12.621 303 76 12.612 754 42

8
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Table A.3. Weights C.

wC
i j i

j 1 2 3 4 5

1 −1.202 023 323 −35.525 194 25 −11.457 820 68 −2.241 729 699 15.828 193 16
2 −1.155 470 927 −94.564 796 0.199 819 673 −4.920 619 951 49.389 888 53
3 −1.584 969 915 113.305 8827 −2.918 013 493 −4.774 123 161 −166.833 1578
4 −0.893 163 571 169.462 8138 3.414 866 597 8.459 631 626 −54.594 542 96
5 −0.619 151 556 11.734 5258 1.394 553 633 1.793 400 921 58.398 9406
6 0.473 042 635 52.986 779 48 1.898 383 384 2.348 990 355 14.673 583 48
7 −0.363 095 154 −51.564 667 02 1.198 738 757 0.656 264 325 74.832 300 22
8 −0.944 699 692 −79.512 631 0.891 859 259 3.217 610 689 117.360 1142
9 −0.370 810 23 48.096 740 74 0.754 604 515 1.050 526 286 121.235 384
10 −5.028 041 395 −271.268 430 7 −12.798 1033 −19.580 108 18 18.301 251 28
11 −1.112 884 2 −14.612 977 61 −3.360 990 006 −9.473 884 072 −19.171 672 98
12 −4.75 × 10−2 49.917 152 88 5.75 166 4225 6.076 556 42 −27.886 009 29
13 −2.338 650 262 25.058 321 49 −9.956 172 095 −20.101 004 26 −112.136 246 1

j 6 7 8 9 10

1 −34.660 699 43 −80.228 115 38 −102.608 3295 26.683 911 54 −2.898 591 684
2 −33.475 305 27 −24.147 375 88 18.339 144 64 −9.284 152 879 8.246 078 896
3 −43.990 856 72 56.115 794 45 −138.143 684 3 −16.134 153 65 7.771 869 081
4 1.634 132 811 −63.281 9568 112.956 9836 46.674 888 73 −65.090 057 38
5 110.463 475 8 −24.494 214 05 93.331 842 54 15.214 349 78 −47.504 767 92
6 18.477 810 52 122.444 201 7 −26.880 907 31 −34.266 784 85 37.210 181 87
7 10.211 576 66 −33.457 813 45 98.506 254 91 15.101 910 19 −13.037 141 03
8 22.589 518 38 36.207 638 57 103.283 194 7 −18.650 546 13 23.229 895 85
9 −32.252 006 02 −28.467 299 92 110.284 7001 13.329 999 43 −32.115 649 24
10 89.750 8315 95.584 812 01 50.186 2502 25.808 523 72 56.036 748 22
11 12.869 291 36 −37.352 155 −42.085 924 3 −20.972 206 63 44.212 654 07
12 −47.511 649 14 −7.364 238 907 −47.426 586 48 23.301 374 44 −7.038 400 094
13 −75.384 452 41 −61.170 403 37 −79.597 4037 −10.872 810 86 16.865 051 73

j 11 12 13

1 33.709 725 54 −55.182 761 64 −39.261 025 57
2 −15.572 271 85 −48.059 747 16 20.946 300 83
3 −45.706 299 19 128.642 1196 46.545 436 31
4 22.152 446 41 14.962 566 14 −24.996 826 86
5 −62.685 881 72 18.745 860 01 64.942 634 42
6 −69.546 883 73 −26.511 290 92 74.094 077 19
7 19.201 902 94 −27.114 555 64 −21.084 0884
8 −2.059 265 461 84.180 585 81 2.501 332 706
9 1.94 × 10−3 124.132 1055 4.362 968 182
10 20.230 364 03 −40.107 830 17 −74.451 362 89
11 47.353 350 92 −101.453 743 3 −47.739 023 03
12 −22.768 286 54 −108.451 955 2 24.239 7533
13 48.196 704 58 5.177 957 459 −46.323 217 64

Table A4. Weights D.

Weight Value

wD
1,1 −1.581 981 887

wD
1,2 −81.172 3725

wD
1,3 −11.255 384 92

wD
1,4 −20.835 658 31

wD
1,5 −73.536 719 11

wD
1,6 −3.092 725 528

wD
1,7 −9.683 353 238

wD
1,8 −47.072 683 77

wD
1,9 −104.408 3203

wD
1,10 −89.939 111 01

wD
1,11 −55.574 878 94

wD
1,12 −6.479 432 706

wD
1,13 −53.408 407 23
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